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Abstract 

For a single plate the separation factor S depends only on the dimension-kss 
time z = Dz/Z2 and the difference between the diffusion coefficients AD. The 
output for a certain S can be increased linearly with the plate thickness while 
simultaneously the diffusion time increases with the square of the plate thick- 
ness. For a cascade of 2 plates of equal thickness, the time scale for equal S is 
expanded by a factor 4 against the single plate. Simultaneously the output is 
increased by a factor 48, where B is the efficiency coefficient for the transfer 
between the 2 plates. 

INTRODUCTION 

It is well known that the use of separative diffusion in the transient state 
involves a compromise: In a diffusion process of 2 components which are 
slightly different in their diffusion coefficients, the first fraction passing a 
barrier is more highly separated than any fraction present in the steady- 
state flux. But the higher the separation wanted, the smaller must be the 
quantity of the fraction. In precomputer times it was hardly possible to get 
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484 ABELL AND MILLER 

a quantitative survey of these processes for obvious reasons. The transient 
state was assumed to be “very short” and this sometimes led to the belief 
that the steady state established itself earlier than it actually did. The 
uncritical use of “time lag” and “induction time” was perhaps misleading 
in the same direction. Thus it appeared worthwhile to analyze the transient 
state diffusion quantitatively for simple barriers such as the plate and the 
hollow cylinder. In this first part, separative diffusion through the plate is 
investigated. 

The Single Plate 

We consider the simple permeation problem for a standard substance A 
and a test substance B. Simultaneous one-dimensional diffusion proceeds 
through an infinite plate with thickness Z1. No mutual interference 
between A and B is assumed. 

The boundary conditions are for the concentrations CA*B 

c, = c, = 0, at z = 0 for all t (la) 

C, = CB = CIAsB, at z = Z, for all t (Ib) 

(2) 

The initial condition is 

C, = CB = 0, at t = 0 for 0 < z < 2, 

The analytical solution of the differential equation 

- = D g ,  ac azc O < z < Z , ; t > O  
at (3) 

is well known (I). We apply it for our substance A. With the above condi- 
tions (la, b) it reads 

c - - z + - c  sin-exp(- z, z,2 ) (4) 
CIA 2 CIAcosnn nnz n2n2DAt 

A -  2, X“,1 n 

The integrated in- and outfluxes can be obtained by formation of 

Thus the integrated outflux at z = 0 is 
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SEPARATIVE DIFFUSION IN THE TRANSIENT 

Using the fact that cos nn = (- 1)" and 

then Eq. (6) reduces to 

STATE. I 

7f2 

12 
_ -  

485 

Q:", = C I A [ e  D r  - 2 Z - 221 f exp (-n2n2DAt/Z12)] (6b) 
6 n R E 1  

In an outflux-time diagram the asymptote to the output curve intercepts 
the time axis at a point t = L which is known as the time lag. In Barrer's 
method for the determination of diffusion coefficients, L is found experi- 
mentally and D is calculated from the relation 

L = Z I 2 / 6 D  (7) 

The time lag is often interpreted as representative for the establishment of 
the steady state. It is obvious, however, from the definition of L that the 
system at t = L, which corresponds to a dimensionless time 7 = Dr/Z12 = 
0.167, is still far from the steady state. 

A more severe criterion can be deducted from Fig. 1 which presents the 
concentration field within the plate at different dimensionless times. The 
figure was drawn according to Eq. (4). The steady state is indicated by the 
straight line C(T + a), and we can estimate its proximity by calculating 
the ratio of the concentrations c(.)/c(r -+ a), e.g., in the center of the 
plate. Table 1 presents the approach to steady state according to this 
criterion. 

At t = L only about 75 % of the steady-state concentration is reached in 
the center of the plate. It is important to emphasize this difference because 
any estimate of the ratio l/a = DB/DA according to Eq. (8b) will be too 
high when steady-state diffusion is assumed after t = L. 

After formulating the integrated outflux for B according to Eq. (6), we 
can introduce the separation factor 

which is defined here as quotient of the ratio of the emerging integrated 
fluxes and the ratio of the concentrations at the input side which is CIB/Cl" 
= 1 according to Eq. (lb). 
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TABLE 1 

ABELL AND MILLER 

T 0.1 0.15 0.16 0.17 0.2 0.4 0.6 

0.526 0.710 0.738 0.762 0.823 0.975 0.997 C(r. 0.5) 
C(T --. 0 3 ,  0.5) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



SEPARATIVE DIFFUSION IN THE TRANSIENT STATE. I 487 

Introducing Eq. (6a) into Eq. (8), we obtain 

In the steady state, as t --* 00, we get 

S = ] / a  = D,/DA (8b) 

It can be seen from Eq. (9) that S depends only on T and a. The separation 
in the transient state can therefore be generalized for any combination of 
D,, t, and 2, for a fixed a. Thus, when we have computed for a certain a 
the separation factor S for a certain set of D, and Z, and for 0 < f < 00, 

we can use the results for finding S for any other combination of DA and 
Z ,  for the same a. For checking the method, S was computed for 2 sets of 
constants : 

(I) DA = D,  = 1.002 x DBr = 1.005 x 
D,. = 1.01 x cm’lsec, Z, = 1 cm 

D,. = 1.01 x lo-’ cm’sec, Z, = 5 cm 
(11) D* = 10-5, DB = 1.002 x 10-5, D,, = 1.005 x lo+, 

The outfluxes Qo,,AsB according to Eq. (6) were computed with a IBM 
360165 computer using time steps At = 10,OOO sec. S according to Eq. (8a) 
was then calculated with a desk calculator. Q was computed to 6 decimal 
places and agreement was found within the 6 decimal places of the numbers 
in Table 2. The data obtained from I and I1 suggest that for equal S the 
output quantity increases linearly with the ratio of the plate thicknesses 
while the diffusion time increases with the square of this ratio. We give a 
general proof of this relation. 

Consider a plate of thickness kZ, where k is some constant. Then, at 
time k’t, we have from Eq. (6b) that the total mass of a species which has 
diffused across the bottom of the plate (z = 0) is given by 

Dk’t kZ, 2kZ OD (-1)” 
Qi\f1’(0,k2t) = C, -$ C 7 exp (- n’n’Dk2t/k2Zl’)] 

n =  1 

or 

where the superscript refers to the plate thickness. 
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488 ABELL AND MILLER 

TABLE 2 

0.012 
0.01 6 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.12 
0.14 
0.16 
0.18 
0.2 
0.4 
0.6 
0.8 
1 .o 
1.8 

1.045461 
1.03461 1 
1.028145 
1.019557 
1.01 5265 
1.012681 
1.010950 
1.009707 
1.008765 
1.008035 
1.007444 
1.006549 
1.005909 
1.005409 
1.005022 
I .OM708 
1.003242 
1.002751 
1.002524 
1.002400 
1.002204 

I. 1171 94 
1.088522 
1.071643 
1 .a9471 
1.038492 
1.03 1 91 6 
1.027526 
1.024379 
1.022009 
1.020156 
1.018665 
1.016411 
1.01 478 1 
1.013544 
1.012571 
1.01 1784 
1.008108 
1.006878 
1.006310 
1.005999 
1.005510 

1.246793 
1.183925 
1.147670 
1.100897 
1.078094 
1.064551 
1.055555 
1.049131 
1.044305 
1.040540 
1.037516 
1.032951 
1.029657 
1.027161 
1.025198 
1 .OU611 
1.01 6222 
1.013757 
1.01 2621 
1.OluXx) 
1.011020 

Thus, using Eq. (6b), we obtain 

out out 

Also, using Eq. (6c) and the fact that the input concentrations are equal, 
the following relationship is obtained for the separation factors: 

Wi) (21) 
S(kzt) = s(r) (8c) 

Table 2 or the corresponding graph can be used for finding quantitatively 
a small difference between diffusion coefficients by one-dimensional diffu- 
sion similar to the method described for cylindrical diffusion (2). For a 
fast estimate of S(T), this function may be approximated by the hyperboIa 

which yields relation Eq. (8b) for T + 00. 

For DB/DA = 1.01 and a = 2.7325 x S is well reproduced by 
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SEPARATIVE DIFFUSION IN THE TRANSIENT STATE. I 489 

Eq. (10) in the range 0.02 < 7 < 0.2, where the deviations from the corn- 
puted values of S - 1 are < 1 %. 

Cascade of Two Plates 

With the goal of designing a still more sensitive tool for measuring small 
differences between diffusion coefficients, the transient state cascade for 2 
plates of equal thickness was investigated. No withdrawal or recycling of 
the depleted fractions was considered. We resume the single plate geometry 
and add a second plate, of equal thickness Z , ,  parallel to the first, and at a 
distance Z ,  below it. The interspace layer Z2 contains initially pure solvent. 
Our interest is now focused on the second plate and we use a new co- 
ordinate system (Fig. 2) where z = 0 designates the bottom and z = Z ,  
the top of the second plate. Between the two plates we assume a conveying 
mechanism for A and B which keeps the boundary condition (Eq. la) 
valid. Thus, in the new system 

C,, = C, = 0 at z = 2, + Z2 for all r (14 
We also assume proportionality between the differential outflux from 

DIFFUSION UPPER 
C(z.01- 0 PLATE 

0 

FIG. 2. Cascade Of 2 p k b .  
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490 ABELL AND MILLER 

plate 1 and the differential influx into plate 2: 

t l la)  

Such a conveying mechanism is approximately given by the convection 
process which was used earlier (3) in qualitative experiments on liquid 
diffusion cascades: The substance emerging at z = 2, + 2, and entering 
the pure solvent layer by diffusion makes this layer gravitationally unstable 
and descends in small drops to the top of the second plate z = 2,. Con- 
vection is much faster than diffusion, and convection times are negligible 
in comparison with diffusion times. Thus this transfer mechanism will 
result in an inhomogeneous concentration field within Z ,  with high con- 
centration at the bottom and nearly zero concentration at the top. In the 
present case /3 depends on the extent of dilution within the solvent layer 
and would be in the range 0 < B < 1. However, it is possible to make 

> 1 by choosing a large area for the first plate and a small area for the 
second plate. The choice of B, which is arbitrary, will not affect the separa- 
tion factor, as we will see. It will appear, however, as a factor of propor- 
tionality for the output quantity. At the bottom of plate 2 we assume zero 
concentration : 

C(0, t )  = 0 

Wz,, 0 Wz, + Z, ,  0 
az = B  az 

(1 1 b) 

With these boundary conditions, Eqs. (1 la) and (llb) and the initial con- 
dition 

C ( Z ,  0) = 0 (12) 

we have to solve the diffusion Eq. (3). Using the result of the single plate 
problem, the boundary condition (Eq. 1 la) becomes 

Take the Laplace transform of Eq. (3) with respect to t, and let 

Thus we obtain 
d2c 
dz sc - C(Z, 0) = D 7  

Using Eq. (12), Eq. (14) reduces to 

0, s > o  p - z =  d2c sc 
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SEPARATIVE DIFFUSION IN THE TRANSIENT STATE. I 49l 

The general solution of Eq. (15) is 

c(z, s) = A exp ( z m )  + B exp ( - z m )  (16) 

where A and B are constants of integration. 
Transforming the boundary conditions (Eqs. l l a  and llb), we obtain 

c(0, s) = 0 (17) 

Now, from Eq. (16) the boundary condition (Eq. 17) implies that 

A + B = O  (19) 

and the boundary condition (Eq. 18) implies that 

Solving for A and B from Eqs. (19) and (20), we obtain 

A = - B =  PCl 
s sinh (2Z, , / s /D)  

Substituting Eq. (21) into Eq. (16) yields 

2bC, sinh ( z K D )  
s sinh (22 ,  ,/s/D) c(2, s) = 

Now we use the CompIex inversion formula to obtain C(z, t ) .  The final 
result is 

exp (- n2?r2Dt/4Z12) sin 
a = l  

Figure 3 was drawn according to Eq. (23). 
The differentical flu q is given by 

ac 
az 

q(z, t )  = D -  

From Eq. (23) 
09 ac = ””[ 1 + 2 z 1 ( -  1)” exp ( - -n2~2Dt /4Z,2)  cos az z,  
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492 ABELL AND MILLER 

FIG. 3. Build-up of concentration in the second plate. 
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SEPARATIVE DIFFUSION IN THE TRANSIENT STATE. I 493 

and hence 
W 

q(z, 0 = - Bc,o[l + 2~1(-1)”exp(-n’n2Dt/4Z12)cos 
Zl 

In particular, the flux at the bottom of the lower plate (z = 0) is given by 
BclD[l + 2n~1(-11)”exp(-n’n’Dt/4Z12)] . w  (26) 

do ,  t )  = - Zl 

By setting z = Z, in Eq. (24), we recover the boundary condition (Eq. 13). 
The integrated flux Q is 

Thus, up to time t ,  the total mass (per unit area of the plate) of a species 
which has diffused across the bottom of the lower plate (z = 0) is given by 

1 W 

Q(0, t )  = 5 D c [ 1  + 2~(- l )”exp(-n2n2D8/4Zl2)  do 
Zl n =  1 

That is, 

82,’ OD (-1)” 
= =[ t - a Zl 7 (exp ( -n’nZDt/4Z,’) - 

Zl 

where we have used the fact that 

(-I>” - R z  
n= x T = T  1 

Therefore 

1 [F 221 82, (-1)” 
Q(0, t )  = BCI - 3 - --p C 7 exp (-n2n2Dt/4Z12) (27) 

n u  1 

RES U LTS 

Table 3 shows the separation factors at the bottom of the cascade for 
different diffusion coefficients. The outfluxes from the single plate and 
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TABLE 3 

7 

0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.24 
0.28 
0.32 
0.36 
0.40 
0.80 
1.60 
4.00 

1.054037 
1 .043718 
1.036773 
1.031836 
1.028 146 
1.025279 
1.022989 
1.019557 
1.017105 
1.01 5265 
1.013830 
1.012681 
1.010950 
1.009707 
1.008769 
1.008034 
1.007444 

1.140625 
1.1 12557 
1.094201 
1.08 1260 
1.071 643 
1.064214 
1.058299 
1 049471 
1.043191 
1.038491 
1 .OM839 
1.03 191 7 
1.027526 
1.024379 
1 . o m  
1.0201 56 
1.018666 

1.300130 
1.236525 
1.196248 
1.1 68257 
1 .147670 
1.131890 
1.119404 
1.100898 
1.087826 
1.078094 
1.070560 
1.064550 
1 . O W 5 5  
1.049131 
1.044305 
1.040540 
1.037516 
1.02361 1 
1.016222 
1.011998 

TABLE 4 

7 

0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.40 
0.60 
0.80 
1 .oo 
1.80 

0.427693D-08 
0.484192D-06 
0.574097D-05 
0.269342D-04 
0.785551D-w 
0.173473D-03 
0.320662D-03 
0.788529D-03 
0.148873D-02 
0.240235D-02 
0.3501 72D-02 
0.475839D-02 
0.614638D-02 
0.237244D-01 
0.433877D-01 
0.633409D-01 
0.833344D-01 
0.163333 

0.4367021D-11 
0.158887D-09 
0.213878D-08 
0.153970D-07 
0.256100D-06 
0.1 74309D-05 
0.70708OD-05 
0.206675D-04 
0.4841770-04 
0.96963213-04 
0.283871D-02 
0.105503D-01 
0.221270D-01 
0.361857D-01 
0.102859 
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SEPARATIVE DIFFUSION IN THE TRANSIENT STATE. I 4% 

from the cascade are presented in Table 4 for different times for the 
standard substance A with D, = 0.1 x lo-’ cm’lsec. It is assumed that 
p = 0.9. 

Comparison between Tables 2 and 3 reveals the simple relation 

Sl(4 = M4.r) (28) 

for every test substance B. 

for the 2 plate cascade, using Table 4, we find 

QA4.r) = 3-6Qi(z) 

Assuming 8 = 0.8, by computation we get Q2(4r)/Q1(r) = 3.2, suggesting 
the general relation 

When we check the output quantity at equal S for the single plate and 

This relation can be deduced from the analytical solution: Let Q,(z, t )  
and Q&, t )  denote the integrated fluxes for the single plate and cascade, 
respectively. Now 

= 4BC1 [z Dt - a Z ,  - 221 7 O0 (-1)” --,rexp(-n’n’Df/Z,?] 
n = l  

Using Eq. (6b), 

QLo, 4 4  = 48Q1(0, 4 
Application of Eq. (8a) yields immediately Eq. (28). 

Relations (28) and (29) can be generalized for transient state cascades 
of the same type with more than 2 barriers. It follows from Eq. (28) that for 
the steady state, t + co, the separation for the cascade is equal to the 
separation of the single plate, in contrast to the steady-state cascades with 
which we are not concerned. 

CONCLUSION 

The present results render feasible the design of quantitative experi- 
ments for the detection of small differences between diffusion coefficients. 
A thick single plate as diffusion barrier will yield higher quantitative 
precision, albeit longer diffusion time, than the 2-plate cascade because 
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496 ABELL AND MILLER 

of the uncertainty of j?. A cascade with large j? may be better suited for a 
quantitative estimate of a very small AD in a shorter time. 
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