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Abstract

For a single plate the separation factor S depends only on the dimension-less
time t = Dt/Z? and the difference between the diffusion coefficients AD. The
output for a certain S can be increased linearly with the plate thickness while
simultaneously the diffusion time increases with the square of the plate thick-
ness. For a cascade of 2 plates of equal thickness, the time scale for equal S is
expanded by a factor 4 against the single plate. Simultaneously the output is
increased by a factor 48, where g is the efficiency coefficient for the transfer
between the 2 plates.

INTRODUCTION

It is well known that the use of separative diffusion in the transient state
involves a compromise: In a diffusion process of 2 components which are
slightly different in their diffusion coefficients, the first fraction passing a
barrier is more highly separated than any fraction present in the steady-
state flux. But the higher the separation wanted, the smaller must be the
quantity of the fraction. In precomputer times it was hardly possible to get
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a quantitative survey of these processes for obvious reasons. The transient
state was assumed to be “‘very short” and this sometimes led to the belief
that the steady state established itself earlier than it actually did. The
uncritical use of “time lag” and “induction time” was perhaps misleading
in the same direction. Thus it appeared worthwhile to analyze the transient
state diffusion quantitatively for simple barriers such as the plate and the
hollow cylinder. In this first part, separative diffusion through the plate is
investigated.

The Single Plate

We consider the simple permeation problem for a standard substance A
and a test substance B. Simultaneous one-dimensional diffusion proceeds
through an infinite plate with thickness Z;. No mutual interference
between A and B is assumed.

The boundary conditions are for the concentrations CA*®

Co=Cyg=0, at z=0forall¢ (1a)
C,=Cp=C*8, at z=2Z forallt (1b)
The initial condition is
Ca=Cy =0, at t=0for0<z<Z, )
The analytical solution of the differential equation
%:D%, 0<z<Z;t>0 (3)

is well known (I). We apply it for our substance A. With the above condi-
tions (la, b) it reads

cA 2 ® C*cosnn . nnz n*n?D,t
CA=71-Z+;.§1 - Sln'z—lexp -z )
The integrated in- and outfluxes can be obtained by formation of
o = Y D, grad C, dt (5)
0

Thus the integrated outflux at z = 0 is

D,t 2Z, & C*cosnn
0o = ZL C* + 73 X = [l - exp (= Dur’n?(Z,%)]  (62)

T a=1
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Using the fact that cos nn = (—1)" and

)n nz

2 _

—
[ 8]

then Eq. (6) reduces to

D, Z 2Z
A T\ B S b S ivect
Qoul = Cl [21 6 nl 21

(; 2 exp (— nznzDAt/le):' (6b)

In an outflux-time diagram the asymptote to the output curve intercepts
the time axis at a point t = L which is known as the time lag. In Barrer’s
method for the determination of diffusion coefficients, L is found experi-
mentally and D is calculated from the relation

L = Z.*/6D M

The time lag is often interpreted as representative for the establishment of
the steady state, It is obvious, however, from the definition of L that the
systemat ¢t = L, which corresponds to a dimensionless time t = Dt/Z,% =
0.167, is still far from the steady state.

A more severe criterion can be deducted from Fig. 1 which presents the
concentration field within the plate at different dimensionless times. The
figure was drawn according to Eq. (4). The steady state is indicated by the
straight line ¢(r — o), and we can estimate its proximity by calculating
the ratio of the concentrations ¢(z)/c(t — o), e.g., in the center of the
plate. Table 1 presents the approach to steady state according to this
criterion.

At ¢ = L only about 759 of the steady-state concentration is reached in
the center of the plate. It is important to emphasize this difference because
any estimate of the ratio 1/a = Dg/D, according to Eq. (8b) will be too
high when steady-state diffusion is assumed after f = L.

After formulating the integrated outflux for B according to Eq. (6), we
can introduce the separation factor

Qom/c B

S = (8a)

Qout Cl
which is defined bere as quotient of the ratio of the emerging integrated

fluxes and the ratio of the concentrations at the input side which is C,8/C,*
= 1 according to Eq. (1b).
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F1G. 1. Concentration field in the single plate.
TABLE 1
T 01 015 016 017 02 04 06
€z 0.5) 0.526 0710 0738 0762 0823 0975 0.997

C(t — «, 0.5)

0,7 _
0,6
0,5
0,4
0,3
0.2
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Introducing Eq. (6a) into Eq. (8), we obtain
rity+23 ci:{E[l — exp (1 — nnty)]
S = 2= 9

g + 2, co;zmr [1 — exp (—n?n150)]
n=1

In the steady state, as t —» oo, we get
S = 1/a = Dy/D, (8b)

It can be seen from Eq. (9) that S depends only on 7 and «. The separation
in the transient state can therefore be generalized for any combination of
D,,t, and Z, for a fixed a. Thus, when we have computed for a certain «
the separation factor S for a certain set of D, and Z; and for0 < ¢ < o0,
we can use the results for finding .S for any other combination of D, and
Z, for the same a. For checking the method, S was computed for 2 sets of
constants:

(D D, =10"%Dg =1.002 x 107%, Dg. = 1.005 x 107,
Dy = 1.01 x 10" ®cm?/sec, Z, = 1 cm

(I) D, =107% Dy = 1.002 x 1073, Dy, = 1.005 x 1075,
Dy- = 1.01 x 10"°cm?sec, Z, = 5cm

The outfluxes Q,,**® according to Eq. (6) were computed with a IBM
360/65 computer using time steps At = 10,000 sec. S according to Eq. (8a)
was then calculated with a desk calculator. Q was computed to 6 decimal
places and agreement was found within the 6 decimal places of the numbers
in Table 2. The data obtained from I and II suggest that for equal S the
output quantity increases linearly with the ratio of the plate thicknesses
while the diffusion time increases with the square of this ratio. We give a
general proof of this relation.

Consider a plate of thickness kZ, where k is some constant, Then, at
time k?t, we have from Eq. (6b) that the total mass of a species which has
diffused across the bottom of the plate (z = 0) is given by

2 @ (_ 1\
(0,k%1) = C, [1,2—];-1—' —5-26—‘ —3’;‘92—‘ (—;})— exp (— n*nDk2t/k*Z, 2)]

=1
or
azy Dt Z, 2Z, & (=1y
00, K1) = kC, [Z -5 .5 l(—nf)—exp(-nznzoz/zm]

where the superscript refers to the plate thickness.



14: 13 25 January 2011

Downl oaded At:

488 ABELL AND MILLER

TABLE 2

Dp/D4 = 1.002 Dy /D4 = 1.005 Dy-/D4 = 1.0]
T S S Ay

0.012 1.045461 1.117194 1.246793
0.016 1.034611 1.088522 1.183925
0.02 1.028145 1.071643 1.147670
0.03 1.019557 1.049471 1.100897
0.04 1.015265 1.038492 1.078094
0.05 1.012681 1.031916 1.064551
0.06 1.010950 1.027526 1.055555
0.07 1.009707 1.024379 1.049131
0.08 1.008765 1.022009 1.044305
0.09 1.008035 1.020156 1.040540
0.10 1.007444 1.018665 1.037516
0.12 1.006549 1.016411 1.032951
0.14 1.005909 1.014781 1.029657
0.16 1.005409 1.013544 1.027161
0.18 1.005022 1.012571 1.025198
0.2 1.004708 1.011784 1.023611
0.4 1.003242 1.008108 1.016222
0.6 1.002751 1.006878 1.013757
0.8 1.002524 1.006310 1.012621
1.0 1.002400 1.005999 1.012000
1.8 1.002204 1.005510 1.011020

Thus, using Eq. (6b), we obtain

(kZy) (Zy)
Q(0, k*1) = kQ(0, 1) (6c)

Also, using Eq. (6¢c) and the fact that the input concentrations are equal,
the following relationship is obtained for the separation factors:
(*Zy) (Z1)
S(k*t) = S(r) (8c)
Table 2 or the corresponding graph can be used for finding quantitatively
a small difference between diffusion coefficients by one-dimensional diffu-
sion similar to the method described for cylindrical diffusion (2). For a
fast estimate of S(t), this function may be approximated by the hyperbola
a Dy
S = p + D, (10)
which yields relation Eq. (8b) for 1 — oo.
For Dg/D, = 1.01 and a = 2.7325 x 1073, § is well reproduced by
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Eq. (10) in the range 0.02 < t < 0.2, where the deviations from the com-
puted values of S — 1 are < 19%,.

Cascade of Two Plates

With the goal of designing a still more sensitive too] for measuring small
differences between diffusion coefficients, the transient state cascade for 2
plates of equal thickness was investigated. No withdrawal or recycling of
the depleted fractions was considered. We resume the single plate geometry
and add a second plate, of equal thickness Z,, parallel to the first, and at a
distance Z, below it. The interspace layer Z, contains initially pure solvent.
Our interest is now focused on the second plate and we use a new co-
ordinate system (Fig. 2) where z = 0 designates the bottom and z = Z,
the top of the second plate. Between the two plates we assume a conveying
mechanism for A and B which keeps the boundary condition (Eq. 1a)
valid. Thus, in the new system

Co=Cg=0 at z=2Z, + Z, forall¢ (Ic)

We also assume proportionality between the differential outflux from

Z|
\\m%'re \\\
SOLUTION
k C‘zﬁ’\fzk"é\
' 1 K]
UPPER

2z2)+2, 7 T
DIFFUSION
C{z,0)=0

PLATE
Z2+2p ————
\;‘()\N\}C%'\l O% {z, : zz{t) (] \QQ
\ SOLVENT
\ LAYER \
\ 0<B=<1)
v

AN
0(1,.1) 'P;Q(q' 12,}\

WY 1 L)
DIFFUSION LOWER
Clz,0)=0 PLATE

Fi16. 2. Cascade of 2 plates.
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plate 1 and the differential influx into plate 2:

0C(Z 1) L OC(Z, + Z 1)
oz Z oz

(11a)

Such a conveying mechanism is approximately given by the convection
process which was used earlier (3) in qualitative experiments on liquid
diffusion cascades: The substance emerging at z = Z, 4+ Z, and entering
the pure solvent layer by diffusion makes this layer gravitationally unstable
and descends in small drops to the top of the second plate z = Z,. Con-
vection is much faster than diffusion, and convection times are negligible
in comparison with diffusion times. Thus this transfer mechanism will
result in an inhomogeneous concentration field within Z, with high con-
centration at the bottom and nearly zero concentration at the top. In the
present case 8 depends on the extent of dilution within the solvent layer
and would be in the range 0 < f < 1. However, it is possible to make
B > 1 by choosing a large area for the first plate and a small area for the
second plate. The choice of §, which is arbitrary, will not affect the separa-
tion factor, as we will see. It will appear, however, as a factor of propor-
tionality for the output quantity. At the bottom of plate 2 we assume zero
concentration:

c0,1)=0 (11b)

With these boundary conditions, Eqgs. (11a) and (11b) and the initial con-
dition

C(z,0 =0 12)
we have to solve the diffusion Eq. (3). Using the result of the single plate
problem, the boundary condition (Eq. 11a) becomes

0C(Z,, 1)
o0z

Take the Laplace transform of Eq. (3) with respect to 7, and let
e(z, 5) = LC(z, 1)]

ﬁc[ +23 (-1 ep (D2, 2)] (13)

Thus we obtain

d*c

s¢c = C(z,0) = D (14)

Using Eq. (12), Eq. (14) reduces to

2
-%-0 s>0 (15)
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The general solution of Eq. (15) is
o(z, 5) = Aexp(z/s/D) + Bexp (—z./s/D) (16)

where A and B are constants of integration.
Transforming the boundary conditions (Egs. 11a and 11b), we obtain

c0,5) =0 an
60(21, 5) _ BC,
T,/s sinh (Zl:7s/D (18)
Now, from Eq. (16) the boundary condition (Eq. 17) implies that
A+ B=0 (19)

and the boundary condition (Eq. 18) implies that

s _ _ —N BC
\/;[A exp (Z1/5D) = Bexp (= Zu/3ID)] = ot —ess (20)

S.

Solving for 4 and B from Eqgs. (19) and (20), we obtain
BC,

A= 7P S @z, J57D) D

Substituting Eq. (21) into Eq. (16) yields

__ 2BC, sinh (z,/s/D)
o(z9) = n (Z,-/51D)

Now we use the complex inversion formula to obtain C(z, f). The final
result is

(22)

C@z, 1) = ﬁq[ LAy )nexp(—n 202 D1f4Z,?) sin <2;z):| (23)

1 Tg=1

Figure 3 was drawn according to Eq. {23).
The differentical flux g is given by -

ac
g(z, 1) = Da—z

From Eq. (23)

= = -Zl:l + 2'21(— )" exp (—n*n>Dt/4Z 2) cos (2;)] (24)
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F1G. 3. Build-up of concentration in the second plate.
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and hence

4z, 1) = ﬂc b [1 + 2):( 1" exp (—n*n2D1/4Z,?) cos (Z?)] (25)

In particular, the flux at the bottom of the lower plate (z = 0) is given by

q©, 1) = ﬂ%l—) [1 + 2 f: (—1)"exp (—n?>n2Dt/4AZ, 2):] (26)
1 n=1

By setting z = Z, in Eq. (24), we recover the boundary condition (Eq. 13).
The integrated flux Q is

t3C
0Z,,1) = L)Da‘zde

Thus, up to time ¢, the total mass (per unit area of the plate) of a species
which has diffused across the bottom of the lower plate (z = 0) is given by

000, ) = £&:2 = f[l +25 (=1) cxp(—n2n2D6/4Z,2):| df
1 r=]
That is,
C » —1 "
Q0, 1) = BG, [t ~ = E ) exp(—n2n2D9/4Z,2)|'0:l
1 n=1
BC.D 822 = (1)
= T[t - ;1-'5 ng —r(exp (—n*n’Dt/AZ %) — l)]
BC, 22,2 8Z,% = (-1) .
= —21—[:1 - 311) ‘—27)- 2 exp(——nznth/4Zﬁ)]
where we have used the fact that
@ (_l)u _ _nz
"21 n n 12
Therefore
Dt 2Z 8Z (-1
00, 1) = AC, [— - ): X exp (- nz,,th/4z,2)] @7
RESULTS

Table 3 shows the separation factors at the bottom of the cascade for
different diffusion coefficients. The outfluxes from the single plate and
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TABLE 3

Ds/Da=1002  Dy/D,=1005  Da/D, = 101
T Sz Sz, Sz'
0.04 1.054037 1.140625 1.300130
0.05 1.043718 1112557 1236525
0.06 1.036773 1.094201 1196248
0.07 1.031836 1.081260 1.168257
0.08 1.028146 1.071643 1.147670
0.09 1025279 1.064214 1.131890
0.10 1022989 1.058299 1119404
0.12 1.019557 1.049471 1100898
0.14 1.017105 1.043191 1087826
0.16 1.015265 1.038491 1078094
0.18 1.013830 1.034839 1.070560
0.20 1.012681 1.031917 1.064550
0.24 1.010950 1027526 1.055555
0.28 1.009707 1024379 1.049131
0.32 1.008769 1022009 1044305
0.36 1.008034 1020156 1.040540
0.40 1.007444 1.018666 1.037516
0.80 1.023611
1.60 1.016222
4.00 1.011998
TABLE 4
. O, mass(Z, = 1) 0, (=09,Z, = 1)

0.02 0.427693D-08

0.03 0.484192D-06

0.04 0.574097D-05

0.05 0.269342D-04 0.4367021D-11

0.06 0.785551D-04 0.158887D-09

0.07 0.173473D-03 0.213878D-08

0.08 0.320662D-03 0.153970D-07

0.10 0.788529D-03 0.256100D-06

0.12 0.148873D-02 0.174309D-05

0.14 0.240235D-02 0.707080D-05

0.16 0.350172D-02 0.206675D-04

0.18 0.475839D-02 0.484177D-04

0.20 0.614638D-02 0.969632D-04

0.40 0.237244D-01 0.283871D-02

0.60 0.433877D-01 0.105503D-01

0.80 0.633409D-01 0.221270D-01

1.00 0.833344D-01 0.361857D-01

1.80 0.163333 0.102859
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from the cascade are presented in Table 4 for different times for the
standard substance A with D, = 0.1 x 1075 cm?/sec. It is assumed that
=09~

Comparison between Tables 2 and 3 reveals the simple relation

$1(1) = S3(47) 28)

for every test substance B.
When we check the output quantity at equal S for the single plate and
for the 2 plate cascade, using Table 4, we find

Q,(47) = 3.60,(v)

Assuming § = 0.8, by computation we get 0,(47)/Q,(1) = 3.2, suggesting
the general relation

0:(41)/Q,(1) = 4B (29
This relation can be deduced from the analytical solution: Let Q,(z, 1)
and Q,(z, t) denote the integrated fluxes for the single plate and cascade,
respectively. Now

0,00, 41) = BC, [‘w’ 232‘ - %l (Llf)fexp( 4n nth/4212)]

Dt Z 2 (-1
= 46C, [— - —6—1 - Zl Z —alexp( n*n’Dt|Z, 2)]
1

Using Eq. (6b),

0,(0, 47) = 460,(0, 7)

Application of Eq. (8a) yields immediately Eq. (28).

Relations (28) and (29) can be generalized for transient state cascades
of the same type with more than 2 barriers. It follows from Eq. (28) that for
the steady state, ¢+ — oo, the separation for the cascade is equal to the
separation of the single plate, in contrast to the steady-state cascades with
which we are not concerned.

CONCLUSION

The present results render feasible the design of quantitative experi-
ments for the detection of small differences between diffusion coefficients.
A thick single plate as diffusion barrier will yield higher guantitative
precision, albeit longer diffusion time, than the 2-plate cascade because
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of the uncertainty of 8. A cascade with large § may be better suited for a
quantitative estimate of a very small AD in a shorter time.
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